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Four classes of turbulence models (algebraic, k− ε, k−ω and a differential
Reynolds-stress model) are applied to boundary layers under adverse pressure

gradient with a constant equilibrium parameter β =
δ∗

τw

dp

dx
. Numerical solu-

tions up to Reθ = 108 give the classical scalings in the inner and outer layer
for all models. Comparison is made with experiments of Clauser at β ≈ 2 and
8 and with recent experiments by Sk̊are and Krogstad at β = 20. We have
also performed new direct numerical simulations at β ≈ 0.25 and 0.65 up to
Reθ = 700. The differential Reynolds-stress model shows the best agreement
with the experiments and the DNS.

1. Introduction

The present study considers the scalings according to four commonly used
turbulence models for equilibrium boundary layers under an adverse pressure
gradient. According to Clauser (1954), the boundary layer is in equilibrium

if the parameter β =
δ∗

τw

dp

dx
is independent of the streamwise position. The

scalings are derived from the turbulence models without making any additional
a priori assumptions, which means that the scalings follow from the straight-
forward numerical solution of the boundary-layer equations. Computations are
made up to the very large Reynolds number of Reθ ≈ 108, which is sufficient
for the similarity scalings to appear. A strong grid refinement was applied close
to the wall. By doubling the number of grid points, the solutions were verified
to be numerically accurate.

The classical theory, which is mainly due to Clauser (1954) and Coles
(1956), finds that the boundary layer can be split up in an inner layer (wall
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function), with length scale ν/uτ and velocity scale uτ , and an outer layer
(defect layer), with the velocity scale uτ and the length scale ∆ = δ∗U/uτ

(where U denotes the local free-stream velocity).
The results for the turbulence models are compared with experiments at

moderate Reynolds numbers (Reθ = 104 to 105) for β ≈ 2 and 8, obtained by
Clauser (1954), and with more recent experiments at β = 20, being close to
separation, due to Sk̊are (1994) and Sk̊are & Krogstad (1994). Furthermore, the
results with the turbulence models are also compared with new direct numerical
simulations for β ≈ 0.25 and 0.65 up to Reθ ≈ 700, which we performed with
a spectral code.

2. Scaling analysis

To derive the scalings of the boundary layer under an adverse pressure gradient
one can start from the turbulent boundary-layer equations for an incompressible
flow, which read

∂u

∂x
+

∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dp

dx
+ ν

∂2u

∂y2
− ∂

∂y
u′v′. (2)

Here x and y are the coordinates along and normal to the wall, respectively;
u and v are the corresponding velocity components; p is the pressure; ρ is the
density; ν is the kinematic viscosity; and −u′v′ is the Reynolds shear stress.

According to the classical theory, the velocity scale in both the inner and
outer layer is the same, namely uτ , which is the wall-shear stress velocity
(τw/ρ)1/2, with τw being the wall-shear stress µ(∂u/∂y)w. The length scale
differs, and is ν/uτ for the inner layer and ∆ = δ∗U/uτ for the outer layer; δ∗ is
the displacement thickness, and U is the local outer-edge velocity. Tennekes &
Lumley (1972) and Wilcox (1993) have derived a so-called defect-layer equation,
which is the equation that describes the similarity solution in the outer layer.
There is, however, a striking difference between the derivations of Tennekes &
Lumley and Wilcox. We have reconsidered the analysis (for more details see
Henkes, 1998) and find agreement with the results by Tennekes & Lumley.

When it is assumed that molecular diffusion can be neglected in the outer
layer, the boundary-layer equations (1)-(2) can be transformed into

(β − 2ω)f + γf2 + (α − 2β − 2ω)ηf ′ − χf ′
∫ η

0

fdη = r′, (3)

with

α =
(

U

uτ

)2
dδ∗

dx
, β =

δ∗

τw

dp

dx
, (4)

ω =
1
2

δ∗

uτ

(
U

uτ

)2
duτ

dx
,

γ =
U

uτ

δ∗

uτ

duτ

dx
, χ =

U

uτ

dδ∗

dx
+

δ∗

uτ

dU

dx
.
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Here η = y/∆, f(η) =
U − u

uτ
, and r(η) = −u′v′

u2
τ

. A prime denotes differentia-

tion to η.
The coefficients can be developed in a series with respect to the small

quantity uτ/U (see Henkes, 1998), which gives

α = 1 + 3β + (1 + β)C∗ uτ

U
+ ..., (5)

ω = −1
2
β − 1

2κ
(1 + 2β)

uτ

U
+ ...,

γ = −β
uτ

U
− 1

κ
(1 + 2β)

(uτ

U

)2

+ ...,

χ = (1 + 2β)
uτ

U
+ ...,

with C∗ =
∫ ∞
0

f2dη, and κ is the Von Kármán constant. To leading order eq.
(5) gives

α = 1 + 3β, ω = −1
2
β, γ = χ = 0. (6)

Therefore, for increasing Reθ (giving uτ/U → 0) equation (3) converges to
the following defect-layer equation for the outer layer

2βf + (1 + 2β)ηf ′ = r′, (7)
with boundary conditions

f → − 1
κ

lnη + C ′ for η → 0, (8)

f → 0 for η → ∞,

and the integral restriction ∫ ∞

0

fdη = 1. (9)

The boundary condition for η → 0 follows from matching with the logarithmic
wall function, and the integral restriction follows from the conservation of mo-
mentum. Equation (7) was also obtained by Tennekes & Lumley, but Wilcox
took ω = 0 (instead of ω = − 1

2β) and thus arrived at a different equation.

3. Turbulence models

To solve the boundary-layer equations (1) and (2) or the defect-layer equation
(7), a turbulence model is needed to represent the Reynolds shear stress. The
following models are considered:

• Algebraic model of Cebeci & Smith (1974)
• Two-equation low-Reynolds-number k − ε model of Launder & Sharma

(1974)
• Two-equation low-Reynolds-number k − ω model of Wilcox (1993)
• Differential Reynolds-Stress Model (DRSM) of Hanjalić et al. (1995)
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The algebraic model uses an algebraic relation to approximate the turbu-

lent viscosity which appears in −u′v′ = νt
∂u

∂y
. The k−ε model solves differential

equations for the turbulent kinetic energy and the turbulent dissipation rate ε
to model the turbulent viscosity, whereas the k − ω model solves a differential
equation for ω instead of ε (where ω is proportional to ε/k). The DRSM is the
most complete model, as it solves differential equations for all Reynolds shear
and normal stresses, as well as for ε. More details of the models are given in
the cited references, and in Henkes (1997).

The boundary-layer equations are solved with a marching numerical pro-
cedure, after discretization with a second-order finite-difference scheme. A
Cartesian grid is used with a very strong grid refinement in the lower part of
the inner layer. To account for the growth of the boundary layer in streamwise
direction, at several x positions the outer edge was increased and the y grid
points were redistributed. All results presented in this paper are guaranteed to
be grid independent. This was checked by doubling the number of points in x
and y direction. A typical y grid consists of 200 or 400 points.

The defect-layer equation (7) only depends on the single coordinate η. This
ordinary differential equation was numerically discretized with a second-order
difference scheme, applying 200 or 400 points. An iteration process was used
to satisfy the boundary conditions and the integral restriction.

4. Direct numerical simulations

DNS were carried out for the pressure gradients β ≈ 0.25 and β ≈ 0.65 with a
code developed at KTH and FFA by Lundbladh et al. (1992, 1994). The spec-
tral method applies Fourier modes in the horizontal directions and Chebyshev
modes in the wall-normal direction. Since the boundary layer is developing in
the downstream direction, the physical boundary conditions in that direction
are non-periodic. To capture these with periodic Fourier modes, a fringe re-
gion is added downstream of the physical domain, where the flow is forced from
the outflow of the physical domain to the inflow. In this way the physical do-
main and the fringe region together satisfy periodic boundary conditions. The
fringe region is implemented by the addition of a volume force having a form
designed to minimize the upstream influence. Time integration is performed
using a third-order Runge-Kutta method for the advective and forcing terms
and Crank-Nicolson for the viscous terms.

The simulations start with a laminar boundary layer at the inflow which
is tripped by a random volume force near the wall. All the quantities are
nondimensionalized by the free-stream velocity and the displacement thickness
at the starting position of the simulation (x = 0) where the flow is laminar. At
that position Reδ∗ = 400. The length (including the fringe), height and width
of the computational domain were 450 × 24 × 24 δ∗ units.

The number of modes was 480 × 161 × 96, which gives a resolution in
plus units of ∆x+ = 16 and ∆z+ = 4.3. The useful region was confined to
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x∗ = x/δ∗ = 150 − 350 which corresponds to Reδ∗ from 550 to 1200 or Reθ

from 330 to 700. The simulations were run for a total of 4500 time units (δ∗/U),
and the sampling for the turbulent statistics was performed during the 2000
last time units. The good accuracy of the DNS and its statistics was verified
by repeating the computation on a coarser resolution (320 × 101 × 64 modes),
and with a shorter averaging time (1000 time units).

5. Large-Re behaviour

The boundary-layer equations were solved for the four turbulence models with
different β values. The calculations were started at Reθ = 300, where the
results from DNS by Spalart (1988) for a zero-pressure gradient were used as
starting profiles. At each downstream position the outer-edge velocity was
iteratively updated until the chosen β was obtained. The calculations were
extended up to about Reθ = 108.

For all considered models the classical scalings turn out to appear for in-
creasing Reynolds number. An example is given in Fig. 1, which shows the
velocity and Reynolds-shear stress in the inner and outer layer, as obtained
with the DRSM for β = 1. In the inertial sublayer, being the outer part of the
inner layer, the velocity (Fig. 1a) converges to the logarithmic law-of-the-wall;
the generally accepted best fit to experiments (having κ = 0.41 and C = 5) is
shown as a long-dashed line. The velocity in the outer layer (Fig. 1b), when
scaled with uτ and ∆, converges to a single similarity profile, the so-called
defect law. Only the solution for Reθ = 103 shows some deviation from the
similarity state, but up to at least graphical accuracy no changes are found
from Reθ = 104 on. The Reynolds shear stress in the outer part of the inner
layer (Fig. 1c) approaches the wall function −u′v′+ = 1. The Reynolds shear
stress in the outer layer (Fig. 1d) converges to a similarity shape, which shows
a local maximum. The appearance of a maximum for the Reynolds shear stress
in the outer layer (with −u′v′/u2

τ > 1), and also for the turbulent kinetic en-
ergy, is characteristic for adverse pressure gradient boundary layers (β > 0);
such a maximum is not found for the zero pressure gradient boundary layer
(β = 0). We checked that the similarity profiles for the different quantities in
the inner layer are independent of β, which is in agreement with the classical
theory, showing that the same wall function holds independent of the pressure
gradient.

We verified that the boundary-layer solution in the outer layer converges
to the similarity solution described by the defect-layer equation (7). However,
the convergence rate for increasing Reθ towards the similarity state becomes
slower for increasing β. For example, for all β values the shape factor converges
to H = 1 at Reθ → ∞, but the shape factor at Reθ = 108 for β = 0, 8 and 20
still is 14%, 47%, and 71%, respectively, above its asymptotic value.

An interesting practical question is how the outer-edge velocity should be
chosen to realize an equilibrium turbulent boundary layer, as represented by
a certain constant β value. Bradshaw (1967) has suggested that a practically
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Figure 1. Appearance of the law-of-the-wall and the defect
law for increasing Reynolds number according to the DRSM
with β = 1; Reθ = 103 (− · −), 104 (– –), 105, 106, and
107 (solid lines); Velocity in (a) the inner layer and (b) the
outer layer; Reynolds shear stress in (c) the inner layer and
(d) the outer layer. (long dash in (a) denotes the experimental
wall function for the velocity, and in (c) the theoretical wall
function for the Reynolds shear stress).

constant β results if the outer-edge velocity is chosen as U ∝ (x−xo)m (where
x0 is a virtual origin, and m is a constant power). To verify this we prescribed
m and computed β for increasing Reθ, but β turns out to be very sensitive to
m when m comes closer to −0.25 (that is where turbulent separation is about
to occur). This problem was overcome by prescribing β instead of m. Fig. 2

shows the results for the DRSM. Here the local m value is defined as
x

U

dU

dx
.

The turbulence model does not give a Reynolds-number independent m power
for equilibrium layers; instead the power becomes slightly more negative for
increasing Reynolds number.
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Figure 2. Reynolds-number dependence of the m power in
the outer-edge velocity according to the DRSM.

Some authors, including Clauser (1954) (who measured β ≈ 2 and 8),
have reported difficulties to establish a stable flow in the windtunnel when the
adverse pressure gradient becomes stronger. On the grounds of this experience,
Clauser has suggested that the same outer-edge velocity (represented by the
same m value) can correspond with two equilibrium boundary layers (i.e. two
β values). This means that an established experimental equilibrium boundary
layer can suddenly lose stability and jump to the other flow type. This is indeed
what is found with the DRSM in Fig. 2. For a given Reθ (above 106) the m-
power decreases for β values up to about 8, above which the power increases
again. For example, the m value for β = 3 is almost the same as for β = 20
(for which experiments were performed by Sk̊are & Krogstad, 1994). A similar
nonuniqueness is found with the other turbulence models.
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6. Comparison with experiments

The solution in the outer layer, as computed from the boundary-layer equations
with different turbulence models, is compared with experiments in Fig. 3 for
the streamwise velocity and in Fig. 4 for different turbulence quantities. The
computational curves correspond to Reθ = 106 for β = 2 and 8, and to Reθ =
5 × 104 for β = 20. All models, except for the k − ε model, closely predict the
experimental streamwise velocity (Fig. 3); the k − ε model overpredicts the
experimental wall-shear stress coefficient for β = 20 at Reθ = 5×104 by 145%.
The DRSM is superior, as it gives a value which is only 7% too large, whereas
the algebraic model and the k − ω model give a slightly larger deviation of
−15% and +17%, respectively.

All models also closely reproduce the experimental Reynolds-shear stress
(Fig. 4a), but the k − ε model somewhat overpredicts the boundary-layer
thickness. The DRSM predicts the structure parameter (= −u′v′/k) best (Fig.
4b), and is in fact very close to the experiments for β = 20. The DRSM also
gives a quite good prediction of the Reynolds normal stresses (Fig. 4c).

With respect to the structure parameter, the experiments in Fig. 4b show
that its value is almost constant, and equal to about 0.3, across most of the
outer-layer thickness. This implies that the Reynolds shear stress is propor-
tional to the turbulent kinetic energy, as was also discussed by Bradshaw (1967)
on the grounds of his own experiments for a weaker adverse pressure gradient.
Most turbulence models (including the k − ε model, the k − ω model, and the
DRSM) have chosen the model constants such that the proportionality with
the structure parameter 0.3 is reproduced for flows in which the production of
turbulence energy Pk (= −u′v′∂u/∂y) equals the turbulent dissipation rate ε.
For example the k − ε model has −u′v′ = νt∂u/∂y, with νt = cµk2/ε. As the
constant cµ is set to 0.09 this gives −u′v′/k = 0.3 when Pk = ε.

7. Comparison with DNS

The DNS were performed for the outer edge velocity U ∝ (x − x0)m, with
m = −0.077 and m = −0.15. At the relatively low Reθ up to which the DNS
were feasible, the corresponding equilibrium parameter β is found to be about
0.25 and 0.65, and the shape factor H is about 1.60 and 1.63, respectively.

The calculations with the DRSM at low Reynolds numbers are compared
with the new DNS. Profiles for the velocity and turbulence obtained from the
DNS at x∗ = 150 were used as initial data for the model calculations. We
varied the initial turbulence and dissipation rate in the model computations,
and found that the initial transients already had decayed at x∗ = 335, where
the comparison with the DNS was made. Thus the comparison is meaningful
since the difference between the model predictions at low and high Reynolds
number (see Fig. 5) are due to the dependence on the Reynolds number and
not to the influence of the initial conditions.
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Figure 3. Comparison between turbulence models and exper-
iments for the streamwise velocity under different equilibrium
conditions; (a) β = 2 (• experiments by Clauser), (b) β = 8 (•
experiments by Clauser), (c) β = 20 (• experiments by Sk̊are
and Krogstad), models: O−O algebraic; �−� k− ε; ×−×
k − ω; � − � DRSM
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Figure 4. Comparison between turbulence models and ex-
periments for the turbulence in an equilibrium boundary layer
with β = 20; (a) Reynolds shear stress, (b) structure parame-
ter, (c) Reynolds normal stress along the wall. models: O−O
algebraic; �−� k − ε; ×−× k − ω; � − � DRSM
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Figure 5. Comparison for β ≈ 0.65; — DNS at Reθ = 670;
- - DRSM at Reθ = 670; -◦- similarity solution for the DRSM.
Streamwise velocity in (a) inner-layer scalings, and (b) outer-
layer scalings. Streamwise normal stress in (c) inner-layer scal-
ings and (d) outer-layer scalings.

Figs 5a,b show close agreement for the velocity profile in inner-layer and
outer-layer scalings at Reθ = 670 and β ≈ 0.65, as computed with the DNS and
DRSM. The figure also shows the large-Re similarity state for the DRSM. In
fact Reθ = 670 is still so low that only a small logarithmic part in the inner layer
is found. The streamwise Reynolds normal stress for β ≈ 0.65 is compared in
Figs 5c,d. The results are shown in both inner and outer layer scalings, and the
similarity solution for the DRSM is included as well. Differences between the
solution at Reθ = 670 and the similarity solution are significant. The results
with the DRSM closely agree with the DNS at Reθ = 670, showing that the
DRSM reproduces the physics of adverse pressure-gradient boundary layers at
relatively low Reynolds numbers. The peak in the Reynolds normal stress in
the DNS and DRSM at Reθ = 670 is part of the inner layer, but there already
is a tendency to develop a second peak in the outer layer, which indeed has
been established in the similarity solution with the DRSM. New DNS at larger
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β, which will show an even stronger peak in the outer layer for the turbulent
kinetic energy, are underway.

8. Conclusions

The numerical solution of the boundary-layer equations up to Reθ = 108 shows
that four classes of turbulence models converge to the same classical scalings
in the inner and outer layer for turbulent equilibrium boundary layers under
an adverse pressure gradient. The solution in the outer layer converges to the
defect law described by the defect-layer equation of Tennekes & Lumley, and
not to the defect-layer equation of Wilcox (only for β = 0, both formulations
are equal). Convergence to the similarity solution becomes slower for increasing
β value. There is a nonunique relation between the m power in the outer-edge
velocity and the equilibrium parameter β for all four turbulence models, which
is in agreement with the experimental findings of Clauser.

Comparison with experiments, particularly the recent experiments by Sk̊are
and Krogstad at β = 20, shows that among the tested turbulence models, the
Differential Reynolds Stress Model is superior. But also the algebraic model
and the k−ω model are reasonably accurate. The k−ε model gives rather large
deviations for strong adverse pressure gradients, where it considerably overpre-
dicts the wall-shear stress. The DRSM was also compared with our new DNS
for β ≈ 0.25 and 0.65 at the relatively low Reynolds number Reθ = 670. It
turns out that the DRSM correctly predicts the low-Reynolds-number effects
for the evolution of the boundary layer to its high-Re similarity solution.
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